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The structure of electrohydrodynamic shock waves is analyzed in the cases 
of small Prandtl numbers, when the medium temperature can be considered 

constant, and of considerable Prandtl numbers, when heat conduction processes 
can be neglected. The interaction parameter is taken to be arbitrary. 

It is shown that, when the electric field and the velocity components E, * 

and usi normal to the shock wave front are of the same sign (the product 

9 l EI* > 0 ; throughout the following analysis ul* > u) is assumed), the 
shock wave has always a structure and the electric field component normal 

to its front is continuous along the shock wave. If the product u,*E,* < 0 

and the current density I+ >, II. a silock wave structure does not occur for all 
values of parameters ahead of the shock wave. Analysis of the structure, when 

the latter exists, shows that behind the shock wave front the electric field isei- 
therequaltothat a:.ead ofit (I:‘,i E,*) or is related to velocity by the equa- 

rion u*II + bE+,, 0. The regions of parameter variation ahead of the wave 

front, in which one or the other of these cases exist, are determined. These 
relationships make it possible to close the system of equations which define 

the state at the electrohydrodynamic shock wave front. as derived in [l]. 
The class of evolutionary shock waves which have no structure is indicated. 

It follows from the analysis of shock wave structure and their evolution that 

in electrohydrodynamics such waves are always of the compression kind. 
If the velocity and the electric field behind the wave front satisfy the 

equation u,,* + b&,, * = 0, the system of equations at the shock wave front 

can be reduced to a cubic equation with respect to the velocity behind the 

wave front. When the smallest of the three possible real roots of the latter 

is greater than the speed of sound behind the wave front, the shock wave has 
no structure and is nonevolutionary. The range of parameters ahead of the 
wave front for which the wave has a structure is defined for the case in which 

rhe smallest real root does not exceed the speed of sound. The other two 

roots of the cubic equation relate to nonevolutionary shock waves which have 
no structure. If the cubic equation has only a single real root, the shock wave 
has always a structure, provided that it is less than the speed of sound behind 
the wave front (the wave is evolutionary), and has no structure in the opposite 

case. 
Analysis of the shock wave structure shows that, when uI*EI* < 0, the 

current density I* < II, and II,* i IJ/:,* # 0. the electric field at the shock 

wave front is continuous. If, however, M, * + (,b;, * = (1, this field may be disr 

continuous. In such case for the determination of parameters behind the wave 
front it is necessary to specify the electric field normal component I:, I* 
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(or any other parameter) behind the front. The range within which I::!* can 

be specified is indicated. If at the same time u,,* + b/:‘,,” 7 ‘1. the velocity 
ahead of the front of such shock waves is greater than the speed of sound and 

behind it, lower than the latter. If I(! ,* + Of:‘, , * = I I. the velocity of the me- 

dium in front and behind the wave front is supersonic. All waves of this kind 

have a structure and are evolutionary. 

1. Strtrment of the problem. Let us consider the stationary flow of gas 

with a positive bulk charge in an electric field in the electrohydrodynamic approxima- 

tion [2]. We direct thez -axis along the stream velocity, and assume that the electric 
field has only a component parallel to that axis and that all parameters of flow depend 
only on 5. In a dimensionless form the equations defining such flow with allowance for 
viscosity and heat conduction can be written as [1] 

pu =I, +u+-‘L- 
7.111: IL 

SE’- n, II = const (1.1) 
31 dT 

4 (y - 1) M1” Pr - !- lu $- = (; _ ;, Ml” d; (1.2) 

2SJ(cp- ‘E,) -- f. 

T + + u2 f 

p =. pT, Z = const 
dE 6 dv 

dl;= ET HQU , d5 :; - Oh’, . R,,J = q(E + R,u), J = const (1.3) 

The dimensionless parameters appearing in Eqs. (1.1) - (1.3) are defined by formulas 

E,W 

S= 
4SlCpL 

8.xp,+u,*’ ’ 
Q=- 

u El* 

J =_ “* 
‘11+1(1*’ K&T’ pr E 2$ 

6 z /(,()J 7-z $$ , 
h . . 411 

3p1*u1* 

(1.4) 

where n*. u*, p* and T* are the dimensional density, velocity, pressure, and tempe- 

rature of tile medium, respectively ; q*, i*, ii* and ‘p* are, respectively, the bulk 
charge density, the current density, the electric field intensity, and the electric poten- 

tial; b, ‘1 and x are the coefficients of mobility, viscosity, and thermal conductivity, 

respectively, which in the subsequent analysis will be considered constant; cp and C, 

are the specific heats, and L is a quantity having the dimension of length. 
The subscript 1 denotes parameters at a particular point of the stream at which the 

terms appearing in the left-hand sides of the second of Eqs. (1.1) and of the first of Eqs. 

(1.2) and related to viscosity and thermal conductivity can be neglected. This means 
that at that point the effect of the stream momentum produced by viscosity and that of 
the heat flux density produced by heat conduction and the work of viscous forces on the 
total density of the stream momentum and of the energy flux are negligibly small. In 
this case the constants of integration 11 and ,‘ defined by flow parameters at the point 
are 
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In the stated approximation the constants 11 and x coincide with the dimensionless 
densities of the momentum and gasdynamic energy fluxes in an inviscid and nonheat- 
conducting flow. 

In the following we propose to investigate the structure of the electrohydrodynamic 

shock wave. For this it is necessary to determine the behavior of integral curves of Eqs. 

(1.1) - (1.3). Two cases of Prandtl numbers Pr < 1 and l’r > 1 will be considered. 
The first corresponds to a high thermal conductivity coefficient of the medium, when 
T = 1 can be substituted for the first of Eqs. (1.1). The second relates to the case of 

a low thermal conductivity coefficient, when the term containing dT/dc in the first 

of Eqs. (1.2) can be neglected. 

It was shown in [l] that in electrohydrodynamics the system of equations at the shock 
wave is not closed, owing to the lack of equations defining the component of the electric 

field Et,* normal to the discontinuity front behind the shock wave. Here and subsequent- 

ly subscripts I and I I denote, respectively, parameters ahead and behind the shock wave 
front. The missing equation was derived in [l] on the assumption of intrinsic exsistence 

of shock wave structure and of monotonically decreasing velocity within the shock wave 

structure. This assumption is always satisfied, e. g. for small interaction parameters. It 
was, also, shown in [l] that for u* > 0 and i* > 0, when ahead of the wave front the 

electric field E,* > 0, we have E,, * z E,*. If E,* < 0 (the gas flows counter to the 

electric field), then two cases are possible: either E,t* = E,* (when uI1* i- bE,* > u) 

or %I * _ _--L( ,,* i b (when u,,* j- bE, + < Oj. 

The missing relationship at the shock wave front in the case of an arbitrary interaction 

parameter will be determined by analyzing the shock wave structure. 

2. Shock wave Btructure in a grr with high thermal conductiv- 
ity cosfflcient, Let us examine the behavior of integral curves of Eqs. (1. l), (1.3). 

and T = 1 in the half-plane uE with u > 0. Dividing the first of Eqs. (1.3) by the 

second of (1. l), we obtain 

where a,* is the isothermic speed of sound, q* > 0 and ut* > 0. Let the current 

it* > 0, the field Et* < 0 and A!( > 1 (the case of ii* < 0 is considered below), 

with the electric Reynolds number R, ( 0 and parameters v < 0 and F, ‘2 (1. The 
condition J - 1 ; /{,,- 1 ‘.. (J implies that Ifi,, I> 1, hence ./ < 1. The order of , 
magnitude of parameter h is that of the free path. It will be readily seen that e 

hq,*?&J il:‘,*--z$1. 
We introduce the notation 

I,, - I? -‘- Rp. 1‘2 11 -\- * - 
SE.1 - ]I 

1 (2.2) 

1 

Let us plot in the considered half-plane the lines /,, 0 and L, .-= 0 (Figs. 1 - 4) 

which we shall henceforth denote by I,io and l,z3, respectively. The disposition of 

these lines is determined by parameters iIf,, f(, and s. It is not difficult to see that 

the disposition of lines I,,‘ and I,, ” in tile dimensional plane u*E* depends on para- 
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meters b, m*, n*and al*, with m* = pi*u,* and I-P = m*ut* $ at*2 
m* i 

T--K Ul 
El=. 

Along lines L,’ and L,’ the integral curves of Eq. (2.1) have vertical tangents . 

Line &” has a vertical asymptote u = 0 and passes through points u = 1 and E = 
+ 1. When u -+ 00, the field E - + (U / s)‘/: along line L,” . Depending on the 

value of parameters S and _rMt line L a” can have various patterns. For 8 < (1 - 

1vt-1)2 it consists of two branches which intersect axis u at points 

i U”,., = 2 
i 

1-t .,Ji2 ,-+[+( t t 
I$ -!_-q--&_]” (2.3) 

At these point2 line Lz” has vertical tangents. For S (( 1 parameters ui” r- 1 / Mt2 
and us’ = 1. When S = (1 - Mt-1)2, the two branches of curve La” join at point 

o u1,2 = 1 / hft which is also the point of intersection of line Lz” with the u -axis . 
With increasing interaction parameter S ( S > (1 - Mtel)“) the branches of curve 

Lp. become separated again, with one branch lying entirely in the upper half-plane 

u > 0, E: > 0 , while the second (symmetric) in the lower half-plane u > 0, E < 0. 
Both branches have their extrema at points 

i 
U m- -- E&(1-$)“‘, S*=(l-+)2 (2.4) 

Mt ’ 

Note that along the straight line u = u, the flow velocity is equal to the speed of 

sound, while for u < u, and u > u, it is, respectively, subsonic and supersonic . 

Hence, for S < S* the left-hand branch of line L2” lies in the subsonic region and 
its right-hand branch in the supersonic region. 

Lines L,’ and L,’ may intersect either at one or three points, whose coordinates U(~) 

and@*! (i = 1, 2, 3)are determined by the equations E = -R, u and 

If S < S*, there is always a point of intersection in the subsonic region, as can be seen 
in Fig. 1. When 9 > S*, either a single point lying in the subsonic (Fig. 2) or the 
supersonic region (Fig. 3) or three points of intersection are possible. In the latter case 

either all three intersection points lie in the supersonic region ot two are in the super- 
sonic and one is in the subsonic region (Fig. 4). Let us assume that S > S* and that the 

curves L,” and L,” intersect at the point of minimum of the upper branch of curve &,‘, 
i. e. that one of the roots of (2.5) is u(l) = u,,, = M;‘. Obviously there can be no other 
points of intersection of L,’ and L,’ to the left of line u =- u,, Substituting this ex- 
pression for u(iJ into (2.5) we obtain 

It follows from this that HQ2< MI”, since S > 0. The remaining two roots u(” and u(3) 
are defined by the equation SRq2 _ M 

u2 t- I 1 
SHqaM, ’ + 3’1i,“Mt = o (2.7) 

The quadratic trinomial (2. ‘7) has positive real roots in the interval u, < u < 1, if the 
inequalities SRQ2 I Mt < 3 - 2. 1/z SRq2Mt > 1 and RQ2 > 1. With the use of (2.6) 
the first two of these inequalities can be written as 
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(2.8) 

For &I, > v 2 + 1 the fractions which bound HQ” from above and below are, respectively, 
greater and smaller than unity, hence there is a nonempty set of values of parameters Mr 

and HII which satisfy the conditions Hp” > i and Hq’ < Mta under which the inequalities 
(2.8) are satisfied. 

It has, thus, been shown that there is a range of parameters S > O,, 1 Ufl 1 > 1 and 
LII, > 1 within which in the interval 0 < u < 1 there exist three points of intersection 
of curves I,,’ and ldZo, which correspond to three real roots of Eq. (2.5). Two of these 
are always ia the supersonic region of velocity u, while the third may lie in the super- 

or subsonic region. This proves the existence of a range of parameters m*, II*, al* and 
b within which curves I,,” and L,” have three intersection points in the dimensional 

plane u*E*. If 1 ir.,/& Mt. then for any interaction parameter S curves L,” and f.,” 
have always, in the interval 0 < u < 1, only a single intersection point in the subsonic 

region of velocity U. The condition 1 H,, I& MI implies that the diffusion velocity at 
point z =3 11. which is equal to the difference of velocities of charged andneutral par- 

ticles, is lower or equal to the speed cf sound at that point. 
Note that EC:.{ L. f)) is valid for the determination of the velocity of gas behind the 

shock wave in investigation of relationships at discontinuities in elec~ohydrodynami~ , 

when the electric field normal component behind the wave is such that Eli* :.= -uII*/b, 

and T* = const [l]. In fact, at constant gas temperature p = n; eliminating with the 

aid of this equality pressure P from the first of formulas (6.2) in [ 13, we obtain formula 
(2.5). Thus the velocity u and the electric field intensity E at points of intersection 

of I_.,’ and L,” make it possible to determine the state of gas behind an electrohydro- 
dynamic shock wave. The selection of one intersection point, if three of these exist, is 

carried out by analyzing the behavior of integral curves in the problem of shock wave 

structure, 
Let us assume that E > 0 and investigate the behavior of integral curves, when Llo 

and Lz” have a single intersection point and are of the form shown in Figs. 1 and 2. 

The first of Eqs. (1.3) implies that the dimensionless electric field always decreases 
with increasing L (in the downstream direction). This makes it possible to select the 

direction of motion along the integral curves, as shown by arrows in Figs. 1 - 4, The 
integral curves which define flows in the presence of positive current J always lie be- 

low curve L,‘. Since the parameter E < 1, hence the slope of integral curves at some 

distance from curves I,,’ and & ’ is small. In proximity to these curves, when iJ1 - t; 

or L2 - E, the tangent of the angle of inclination of integral curves is tlE ! du - 1, 
the curves undergo an abrupt turn, and then run along lines I;,” and fJzo in their f,- 
neighborhoocl. With decreasing parameter E (the viscosity coefficient 11 --* 0) riie in- 

tegral curves approach closer and closer lines Lie and /,a’ , and at the limit a -+ (I 

merge with the latter and follow these from thereon. The angle of inclination of integ- 

ral curves away from lines L,’ and i,,’ tends to zero, when a --r (1. Analysis of the 
second of Eqs. (1.1) and of the first of Eqs, (1.3) shows that various SeCtiOnS Of integral 

CmeS in the &-plane relate to various flow patterns in the physical plane. 
I,et us consider the integral curve 1 which for e + 0 emerges horizontally from a 

small neighborhood of point IL .. 1, 1; 1 . Above this point curve 1 runs along line 

La’.‘ at close proximity to it. Let :1 L,, and il cE be, by definition, characteristic dis- 
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tances at which the velocity and the eleceic field determined. respectively, by the se- 

cond of Eqs. (1.1) and the first of Eqs. (1.3). vary by an order of magnitude of unity. 

Along the part of integral curve 1 where utr < 11. < U‘ the distances AC,, - 1 and 

ACE - 1, since there l&l - I! - E and IL, 1 - 1. A region of varying flow velo- 
city and electric field intensity, in which the effect of viscosity on parameter variation 

is small, corresponds in the physical field to this part of curve 1 . Since along the latter 

IhI - 1 and l&J - 1 , for urIr < u ( 1~11, we have IL,, - E < 1 and A&y - 1. 
A narrow flow region witi] higil rare of vek)c’~l~ varlallorl ar,d v~rtl!ally Constant electric 

field corresponds in the physical field to this part of curve 1’. FInally. along rile part of 

integral curve I where uIV < u < ~111 the distances A 5, - E and A 5~ - 8, since 

there ILlI - E and l&l - 1. A narrow region of flow with high rate of velocity and 

electric field variation corresponds in the physical plane to this part of the curve. In the 

neighborhood of the point of intersection of lines I,,” and 1,2’ defined by coordinates 

~(‘1 and E(l), u (I) is the root of Eq.(2.5) and the integral curve I has a vertical 

tangent at its intersection with lJzc and then continues along the latter. Along this part 

of the integral curve LIP,, - 1 and :\;c - 1, since there IL, 1 - 1 and Lz - E. .I 
region of flow with varying II and E in which viscosity has little effect on parameter 
variation corresponds in the physical plane to this part of the integral curve. Let us assume 

that part of integral curve / where u > 1 and E > 1 relates to the flow of gas ahead 

of the shock wave, while its part where f~‘< E(t) relates to the flow behind it. Along 

these Darts of the integral curve the contribution of the stream momentum density to the 

over-all density of the momentum flow can be neglected. The part of the integral curve, 
along which k(l) < E < 1, defines the structure of the electrohydrodynamic shock 

wave. A region of flow with considerable variation of parameters u and ,?? corresponds 
in the physical plane to this part of the integral curve. The variation of parameters u 

and d in the physical planes cu and CE which corresponds to integral curve 1 is 

shown in Fig. 5. At the limit E -+ 0 the integral curve I leaves line L,” at point 
u -- 1, fi - 1 and joins line Lzo at point u = u(l), E .= E(l). These points corre- 

spond, respectively, to the state of gas immediately ahead of and behind the shock wave 
front. Parameters ~(1) and EC’) are related by the expression Ec’) f H,u(‘) y= 0, 

which in dimensional form can be written as 

uII* + bErr* - 0 w9 

Formula (2.9). which was derived by analyzing the shock wave structure for arbitrary 
interaction parameter S, is the missing relationship which closes the system of equa- 
tions defining the state at the shock wave front derived in [Il. 

It will be seen from Figs. 1 and 2 that many integral curves lie in the vicinity of point 
U(‘), kc” all of which pass through this point and, when E -+ 0 , leave lineLzO at points 

lying above and below point u = 1, E = 1. To every of these points corresponds a 
particular State ahead of the shock wave front whose structure is defined by the integral 

curve emanating from that point. The integral curve which for &--t 0 coincides with 
the segment of the straight line E - E(l) is denoted by the numeral I I . Integral 
curves which lie above line 11 define the structure of shock waves with a discontinuity 
of the electric field at their front. The integral curve /I itself and all curves lying 
below it, including those for E < 0, define the structure of shock waves along which 
for t: --+ 0 the electric field is continuous. Those points at which integral curves join 

line 1,~’ relate to the state immediately behind the wave front. As Shown in [I], the 
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equations of gasdynamic parameters behind the wave front for a continuous field are 
the same as the related equations of conventional gasdynamics. Note that for 1:‘ ( (1 

the dimensional electric field corresponding to integral curves leaving [,O is positive 
ahead of the wave front. 

If the pattern of line ZJ2” coincides with that shown in Fig. 1 (S ( S*), the gas 
velocity behind the shock wave front is subsonic and the shock wave is evolutionary ~1. 

If, however, s > S*, then point u(l), Ec’) of intersection of lines I,,’ and I,,’ may, 
for specific values of parameters R,, Mt and ,!! lie in the supersonic region (Fig. 3). 

For E > E(l) the integral curves emanating from the e-neighborhood of line Lc. 
run at a small slope up to the intersection with line l,,“, follow its e-neighborhood up 
to intersection with line Lzo in the E-neighborhood of point a, Et’), and then turn 

to continue at a small negative slope in the direction of increasing 11. The physical 
meaning of these parts of integral curves up to intersection with line L,” is similar to 

that previously described. Along the part of integral curves beyond the intersection 
point, where u > 0 the lengths A 5, - R and !\ ?& - 1, since there !I,, \ - 1 
and L2-- 1. In the physical plane this part of integral curves defines a flow with abrupt 

increase of velocity and constant electric field (Fig. 6). Note that for e: -+ 0 the deri- 
vative du / dc -+ - 00 along the integral curves in the region where L,< 0 (above 

line Lo2 ), while m the region in which L2 > 0 (below line Lzc) the derivative du / 
dc-+ 0~. Beyond the intersection with line Lzo the integral curves nowhere run along 
the latter, i.e. there is in this case no section which corresponds to an inviscid flow. 

Thus, for E > 0 there are no integral curves which would define the structure of a 

shock wave. 

Let us now consider the behavior of integral curves, when lines L,O and Lo2 intersect 
at three points A (I#), E(l)). B (zl(‘). 1:‘@‘) and C (1~‘~)~ E(s)) with UC’) < ~(~1 < 
ut3). Let for z#) < U, the pattern of lines I,,’ and L,” be that shown in Fig. 4.The 

integral curves which leave the ~-neighborhood of line 1 ,20 above it do not yield in region 

11 > u(3) a shock wave structure. This case is analogous to that of a single intersection 

point of lines Ll” and L2’ lying in the supersonic region. 

The integral curves which leave the upper c-neighborhood of line L2” in the region 
of u,~ < u < I!(‘) define the structure of evolutionary shock waves. This is analogous 

to the previously considered case of a single intersection point of lines f,,’ and Lzc 
lying in the subsonic region. If, at the same time, ZL* ( u ( IL@), where 11* is the 

greater root of equation L, (u, E(l)) -= 0, the condition ILII* + bErI* = 0 must 

be specified behind the shock wave front. When u, < U< U*, then EII* LY EI* 
at the shock wave front. The section of line L2” lying between points B and C is situ- 

ated in the region of J < 0. 

If u(l) =_ 11 ,,, , all intersection points of lines L,’ and L,” lie in the supersonic re- 
gion and there are no integral curves defining a shock wave StruCture. 

The relationships at electrohydrodynamic shock waves derived in [l] admit an eVOlu- 
tionary discontinuous transition from any arbitrary point of hne La” to any other arbitrary Pint 

of that line with u(Q < u < U, (for &’ > S*, Fig. 4). when u > u(3), or with u(l) < 
u < ulu (for S & S*. u1 o is the left-hand intersection point defined by (2.3) ). It 
follows from the present investigation that such shock waves have no structure. 

The foregoing analysis dealt with the case of E > 0. when E < 0, the structure 
of shock waves exists and the field at their front is contmuous. 
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3. Shock WIVO ttructure fn li grc with low thermal conductt- 
vi ty aosfflafent, Let us consider the structure of a shock wave, when .&‘r > 1. 
It will be shown below that along integral curves which define in the &-plane the flow 

inside a shock wave the variation of electric potential is small. Neglecting in the first 

of Eqs. (1.2) the term containing dT / dc and setting (p = ‘pi, we obtain with the use 
of the second of Eqs. (1.1) for the temperature of gas the expression 

T = 7 (7 - 1) Ml2 (‘,/2u2 - SE2u - h -j- 2) (3.1) 

With the use of (3.1) we can eliminate temperature from the second of Eqs. (1.1). Let 

us introduce the notation 

L 1 = E + H,u. 

7SE2-++&-S 

It will be readily seen that 

Dividing the second of Eqs. (3.3) by the first, we obtain 

(3.2) 

(3.4 

Let us examine the behavior of integral curves in the half-plane uE, u > 0. Let 

E,* < (4 q* > 0, jl* > 0 and M,>l. Wethenhave Q<O? R,<O and 
6 > (J , as well as I&,] > 1. We denote lines L, = 0 and Lz = 0 in the half-plane 

uE, ~1 > 0, respectively, by i&O and Lzo. Along these lines the integral curves defined 

by Eq, (3.4) have vertical tangents. Line ~!/a“ has a vertical ~ymptote u =-r 0 , and 

for u -+ 00 the electric field along line Lz” is E - [ (y + 1) u/2yS]‘l*. We intro- 
duce the notation r -I- 1 

s,=1++-- 
y--? 

y 1 
z 

y-r 
+ -“-I”’ 

(y _1- 1) Ml” 

It is shown below that S, > 0 for any r > 1 and M, > 1 l When the interac- 
tion parameter S < S,, the curve Lo2 consists of two branches which intersect line 
E = 0 at the two points, where their tangents are vertical. For ,!$ = s, these two 
branches unite at the single intersection point of La” with the u-axis. With increasing 

S branches of line L,” become again separated, with one lying entirely in the part 
u > 0, E > 0 of the considered half-plane, and the other (symmetric to it) in the 
half-plane u > 0, E < 0. The two branches have extrema at points 

Line Lzo always passes through points u = 1, E = -F_ 1. Since E,2 < ,l, then 

Sal > 0. 
Let us plot in the half-plane uE, u > 0 line Ls” along which the velocity is 

equal to the speed of sound. Along it u2M;1 = T, hence 

(3.6) 

The form of line L,” depends primarily on the sign of coefficient C. If c > 0 (Y)> 

2), line L3* has two branches and, depending on parameters y, M, and St these may 
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intersect the u-axis with vertical tangents at two points, or at one point (the two bran- 
ches merge) or, finally, not intersect the u-axis at all. In the latter case the two bran- 

ches of line La* are symmetric and lie in the upper and lower quarters of the half-plane 

z&, u > tl. Thus for y > 2 the form of line L,’ is generally similar to that of line 
L;. 

If c < 0 (v < 2), line L3” has only a single branch which intersects the u-axis 
with a vertical tangent. For c -= 0 (y = ?,) the form of line Lo, is determined by the 
sign of parameter 11. When n > 0, this line has a single branch (as for c < 0) and, 

when Ii < 0, it is a hyperbola whose branches Iie in the upper and lower quarters of 
the half-plane, respectively. 

The relative positions of lines L,O and L,” can be different. Their intersection is 
only possible at points of extremum (3.5) of line Lpo, if these exist, or at the point of 

merging of branches of the line L, (i.e. when y 3 is*). If lines L,” and L,” intersect, 
the parts of line L,” contained in the interval u ( u,= are in the subsonic region, those 
in the interval u > u, are in the supersonic region, and at the point of their intersection 

the velocity is sonic. If lines LA0 and &“ do not intersect (.S < S,), the entire left- 

hand branch of L," is in the subsonic, and its entire right-hand branch in the supersonic 

region. 
The coordinates uccct, &In1 (k = 1, 2, 3) of points of intersection of lines L, and L, 

are determined by equations E = -R,u and 

Equation (3.7) coincides with the equation which defines the state of gas behind the 

shock wave front in investigations of relationship at a discontinuity, when the electric 

field behind the front is E,, * = -uII* [ b. In fact, by eliminating in Eq. (6.2) the pres- 

sure p derived in p J ,we obtain (3.7). This equation was investigated in p J in connec- 
tion with the analysis of one-dimensional flows of perfect gas in the presence of shock 

waves. 
Let us investigate the possible behavior of lines Lx0 and L,” in the case of their 

intersection at the minimum point of the upper branch of L,” (S > S,). It is obvious 

that there can be no other intersection point to the left of point %, Substituting the 
root utii = u, into (3, ‘7). we obtain 

s == s, (; - Rp2u,~)-1 

For the determination of the other two roots of (3.7) we have the equation 

The quadratic trinomial (3.8) ha real roots in the interval II, < u < i, provided 

that the inequalities R$ > 1 and 

% < Ro2 G 
3--2fg (3.9) 

urns i- urn2 -2u,.+i ri, [Em a-(2’)/Z--Qu,+1] 

are satisfied. For u, < v’s - i the expressions which bound R$ from above and 

below are, respectively, greater and smaller than unity. It can be readily shown that 
there exists a nonempty set of values of parameters y, RP and MI which satisfy condi- 
tions -2 > i, RkQ i and R,,* < U, +, for which the inequalities (3.9) are satisfied 
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Fig, 1 Fig 2 

Fig, 5 Fig. 6 
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and, consequently, there are two more intersection points of lines L,” and &c, when 

a > Urn. A small variation of parameters, for example that of interaction, which deter- 
mine the relative position of lines L,O and L,O can result in a shift of the intersection 
point at the minimum of line I>?” either into the subsonic or supersonic region, while 
the other two intersection points remain in the supersonic region. Thus lines 1.,’ and 

b” can have three intersection points, two of which are always in the supersonic region 
and one which can lie either in the sub- or supersonic region. A similar statement con- 
cerning the disposition of roots of the ~lynomial(3.7) was obtained in [3‘j. When 

1 RG f > %-‘, curves L,* and L,O in the interval tl < u * 1 always have a single 
point of intersection in the subsonic region. 

The pattern of behavior of integral curves for y > 1 is analogous to that considered 
in Sect. 2 for the case of T* == ConPt (Figs, I - 4). The dash line 1,,* in Figs_ 1, 2 
and 4 relates to y< 2 and in Fig. 3 to 3; >. 2 . 

Let E > 0. In’this case, if Eq. (3.7) has one real root in the subsonic region. the shock 

wave has a structure and is evolutionary ; behind the discontinuity front the condition 
EIl* - El* &,I* = - UI[* / b) is fulfilled, when the shock wave structure is defined 
by integral curves lying below (above) of integral curve I I. Along the latter the elec- 
tric field Elt * y= El* = - UI~* f b. When the root of Eq. (3.7) is in the supersonic 
region or there are three positive real roots in that region (this can only occur for s > 

s,), there is no shock wave structure. It one of the three real roots (for &’ > 8,) is 
in the subsonic region (FiL 4), the shock wave structure exists and the wave is evolution- 

ary, provided that U, ( u ( ~(2) (u 0) < u(?) < UC:‘) are roots of Eq, (3. 7) ). And 
if in this case II* < u < l&V, where II* is the greater root of equation L2 (,U. tic”) = 

= 0, it is necessary to specify /:‘I1 * = - uII* / b behind the shock wave front. If 

t&Z< @GU*, then at the shock wave front Eir * = El*. When the interaction para- 

meter S < S, , one root of Eq. (3.7) is always in the subsonic region and, if in this case 

there are three intersection points of curves L,‘ and (,.,“. then for K >, 0 there exist 
shock wave structures with velocity ahead of the front defined by !(2c < II ( !r(‘) where 
ILzL is the velocity at the intersection point of the right-hand branchof line rXX with 

the u-axis. Such waves are evolutionary, The relationships at electrohydrodynamic 
shock waves fl] admit for IL > ~9) an evolutionary discontinuous transition from any 

arbitrary point of line I,,” to any other of its points with u(l) < u < L[,~ (fors > se) 
(Fig. 4) or with u(l) < II < (1,’ ( for ,$ & s, ), where LL,~ is the velocity at the inter- 

section point of the left-hand branch of line Lx” with the u-axis. The results of this 

investigation show that such shock waves have no structure. If E < 0, then there exists 
a shock wave structure and the electric field at the shock wave front is continuous. It 
is evident that electrohydrodynamic shock waves are always Compression waves. 

Let us consider the variation of the electric potential along integral Curves. It will 
be seen from the second of Eqs. (1.3) that the characteristic length of potential variation 

A& along the integral curves is everywhere of the order of unity. Hence along the 
sections of integral curves which define the shock wave structure and to which in the 

physical plane corresponds tile flow region 216 - F. the electric potential variation is 

4 - F. For E -. 0 parameter AT . 0 and the potential at the shock wave front is Con- 

tinuous. Note that the sections of integral curves to which correspond flow regions At- 
1 llave no physical meaning, since there LVJJ - 1. Any point of line Id,’ in the regions 
defined above as admissible can correspond to the state immediately ahead of the shock 
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wave from. However, flows ahead of shock front close to perfect are not defined by set- 
tions of integral curves lying along line Lzo, since in such flows the electric potential 
varies, while line L,O has been constructed without allowance for variation of 9. Inte- 

gral curves which define a close to perfect flow ahead of the wave front lie along the 
surface of space uEcp over which the mass, momentum and energy fluxes of a perfect 
flow are constant_ Close to this surface lie integral curves which define a nearly perfect 

flow behind the shock wave front. 
We sness the difference between the atafemenf of the electrohydrodynamic shock 

wave problem and that of the corresponding problem of gasdynamics. In the latter the 

state ahead and behind the shock wave front is defined by the total mass, momentum and 

energy fluxes, while in electrohydrodynamics the specification of these fluxes is not suf- 
ficient for the determination of parameters ahead of the shock wave front. In rhe latter 
case it is necessary to specify parameters u and E ahead of the shock wave. Only then 

the point of line L,’ which corresponds to the state ahead of the shock wave is uniquely 

defined. 
The presented here analysis of the structure of electrohydrodynamic shock waves 

makes it possible to indicate for given mass, momentum and gasdynamic energy fluxes 

the range of flow parameters ahead of the wave front for which evolutionary shock wave 

structures exist. 

4, Shock wave rtructurac wlth ions moving counter to tha arc 
atterm, Let q* > 0, u*> 0, El* ( 0, jl* (0 and M,> 1 with E< 0 and 
R, < 0. From the third of Eqs. (1.3) follows that 1 R, 1 < 1. The equation of line Lzo 
in the case of Pr (( 1 is given by the second formula of (2.2) and for that of Pr > 1 
by the second formula of (3.2). It can be shown that in the half-plane uE, u > 0 
lines L,” and L,” have either one or three intersection points, and in the interval 0 < 

u & 1 there are either two such points or they are altogether absent. In the former case 

one of these points is in the subsonic and the other in the supersonic region, or both lie 
in the supersonic region. The determination of possible disposition of intersection points 
is carried out in the manner described in Sects. 2 and 3 by superposing one of the inter- 

section points with the point of minimum of curve L,” (for S > S,). The integral 

curves of Eq. (2.1) (Pr < 1) and of Eq. (3.4) (Pr > I), which describe the flow with 
a negative current lie above the straight line L,“. Let us examine in detail the behav- 
ior of integral curves in the case in which in the interval 0 < u < 1 there are two 
intersection points of lines L,” and L2’. Let point ‘4 (~(‘1, E(l)) lie in the supersonic 
region, The second intersection point B (/A@), Et2)) is shown in Fig. 7 lying in the 

subsonic region and in Fig. 8 in the supersonic region. The integral curve which for 
E -+ 0 leaves the small neighborhood of point A with zero slope is denoted by 1, The 
integral curves which leave with zero slope the neighborhood of lines L2’ above point 

A (Figs. 7 and 8) or below point B (Fig. 8) define the structure of evolutionary shock 
waves with a continuous electric field at their front. In Fig. 8 the integral curve which 
for e --t 0 leaves with zero slope the neighborhood of point B is denoted by 11. For 
various electric fields within the limits 

E(2) < E < EC) (4.1) 

the integral curves which in Fig. 7 are shown lying below curve I and in Fig, 8 between 
curves 1 and If pass for E -+ 0 through the small neighborhood of point A and, ther, 
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continue with a small positive slope up to the point of their intersection with the subso- 
nic part .of line L,“. 

Sections of these integral cties which lie above point A and below their intersection 
points with line Lz“ for E + (J run close to the line L2’ which corresponds to an in- 

viscid flow. These integral curves define the structure of evolutionary shock waves with 
a discontinuity of the electric field at their front. In this case the parameters at point 

A are defined by the relationship ,5’(l) -f R,+(l) 0 (or in dimensional form by 
uI* + bEr* = 0) and correspond to the state ahead of the wave front. To determine 

the state behind the front of such shock waves it is necessary to specify one of the para- 

metets there, in particular, the electric field may be specified within the limits given 

by (4.1). The structure of similar shock waves was considered in [4] for the case of a 

small interaction parameter. The integral curve / defines the structure of an evolu- 

tionary shock wave, when the field behind its front is L:‘rl* EI* = - UI* / b,while 

the integral curve II (Fig, 8) defines the structure of an evolutionary shock wave, when 

the field ahead is EI* -- uI* / 1) and behind it EII* .--- .- &?)* / b (UC*)* is 
the dimensional value of ~(‘1). Behind the front of sucn shock wave the velocity is sub- 

sonic and equal to the smaller root of equation Lz (u, E@)) = 0. 

Fig. 8 

Besides the integral curve fI which for e -+ 0 leaves the small neighborhood of 

point B with zero slope (Fig. 8) there is a set of close-lying integral curves leaving the 

small neighborhoodofthat point with a slope equal to that qf line L,“. Below point B 
part of these integral curves run in close pcoxlmity to line Lz” Such integral curves 

define the structure of sho_& waves, when the parameters ahead and behind their front 
are related by uk* -j- bEk* = 0 ( k = I, II ) and the velocity behind and ahead 
of the wave front are supersonic and equal to the greater tuot of equation LJu,E(‘))= 
0. Waves of this kind are evolutionary, The number of equations defining the state at 
their front is equal six. They ate: the laws of mass, momentum and energy conservation. 

Ohm’s law, and the two conditiora U& * -t_ bEk* = 0 (k = I, II). For a wave to.be 

evolutionary it is necessary that the number of low intensity waves radiating from the 
discontinuity be equal five (one less than the number of equations at the discontinuity 
front). Downstream of the discontinuity there are in this case three short wave high- 
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frequency perturbations in the form of one entropic and two sonic waves which propagate 

at velocities utI* and urt*i- art* . - respectively. All parameters, with the exception of 

the electric field. vary in these perturbations. An ion entropic wave, in which only the 

charge and current densities vary, propagates upstream of the discontinuity. Perturbations 

of the electric field ~EI* and &Err* to the left and right of discontinuity, respectively, 

propagate at infinite velocity (the wave is of infinite length), while the charge density 

remains unperturbed 151. Let us assume that 6EI* (or 6Er1*) is specified, which corre- 

sponds to a wave of this kind reaching the discontinuity. Thk quantity GErr* (or ~EI*) 
is then determined by the six relationships at the discontinuity stated above together 

with the amplitudes of the remaining four propagating waves and the parameter charac- 
terizing the perturbation of the discontinuity velocity. 

In the case when the relation uk* + bE k* = 0 is fulfilled only ahead of the dis- 

continuity front (k = I) or only beinnd the discontinuity front (k = II), the num- 

ber of relationships at the discontinuity is equal five, and the number of propagating 
waves from the discontinuity is also less by one since the gas velocity behind the dis- 

continuity front, in these cases, is subsonic. 

If only one intersection point of lines L,” and L,” exists and is located in the super- 

sonic region, and if ahead of the wave front the gas velocity is u, < u ( u(l) (u(l) 

is the velocity at the intersection point), then there exist shock waves which have a struc- 
ture. At the front of such waves the field is continuous, If the unique intersection point 

of lines L,’ and ,&’ lies in the subsonic region there are no integral curves which cor- 
respond to shock wave structure. 

An error was made in the derivation of the simplified equation of the shock adiabatic 

curve in Sect. 6 of [l]. The term 6,eVa, which for V - 1 is of the same order of 
magnitude as the retained terms of Eq. (6.2). was neglected here. Consequently, Eq. 

(6.3) and its corollaries are incorrect. 

The dependence of possible states behind the shock wave front on the state ahead of 
it in the UE -plane is analyzed in the present paper. 

The authors thank A. G. Kulikovskii for discussing this subject and for his valuable 
advice. 
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